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We introduce a nonlinear frequency-dependent Dþ 1 terminal conductance that characterizes a
D-dimensional Fermi gas, generalizing the Landauer conductance in D ¼ 1. For a 2D ballistic conductor,
we show that this conductance is quantized and probes the Euler characteristic of the Fermi sea. We
critically address the roles of electrical contacts and Fermi liquid interactions, and we propose experiments
on 2D Dirac materials, such as graphene, using a triple point contact geometry.
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A dramatic consequence of the role of topology in
the structure of quantum matter is the existence of
topological invariants that are reflected in quantized
response functions. The hallmark of this is the integer
quantized Hall effect (IQHE) [1], which probes the
Chern number characterizing the topology of a gapped
two-dimensional (2D) electronic phase [2]. Quantum
topology also plays a role in the electrical response of
metals. For example, the Berry phase associated with
the Fermi surface of a 2D metal contributes to an
intrinsic nonquantized part of the anomalous Hall
conductivity [3]. In 3D, the Chern number associated
with the Fermi surface in a Weyl semimetal leads to a
quantized circular photogalvanic effect [4] in the
absence of disorder and interactions [5]. In addition
to the quantum topology associated with the twisting of
the quantum states on the Fermi surface, metals also
exhibit a simpler geometric topology associated with the
Fermi surface. It is well known that noble metals, like
copper, have a Fermi surface with a nontrivial genus [6].
While Fermi surfaces have been mapped in detail, and
Lifshitz transitions [7] where their topology changes
have been characterized [8,9], Fermi surface topology
has not been measured directly. Here we pose the
question of whether the topology of the Fermi surface
is associated with a quantized response.
An indication that the answer is affirmative is provided

by the 1D case. The Landauer conductance of a ballistic 1D
conductor is e2=h times the number of occupied bands
[10,11]. While this quantization is related to the IQHE,
there are important differences. First, it is less robust, since
it relies on reflectionless contacts and the absence of
scattering. Nonetheless, conductance quantization has been
observed in quantum point contacts [12], 1D semiconduc-
tor wires [13,14], and carbon nanotubes [15], albeit with
less precision than the IQHE. A second difference is that,
unlike the IQHE, the quantized value does not reflect the
topology of a 2D gapped state, but rather the topology of
the 1D filled Fermi sea.

In this Letter, we seek to generalize this to higher
dimensions. For a D-dimensional ballistic conductor with
suitably defined ideal leads, we introduce a Dþ 1 terminal
frequency-dependent nonlinear conductance,

IDþ1ðωΣÞ ¼ GðfωpgÞ
YD
p¼1

VpðωpÞ; ð1Þ

where IpðωpÞ [VpðωpÞ] are the current (voltage) in lead p
at frequency ωp and ωΣ ¼ P

p ωp. We will show that for
D ¼ 1 and 2, GðfωpgÞ has a universal term of the form

GðfωpgÞ ¼
iωΣQ
pðiωpÞ

eDþ1

hD
χF; ð2Þ

where χF is the Euler characteristic of the D-dimensional
Fermi sea. We will focus on D ¼ 2, leaving the generali-
zation to D > 2 to future work. This result will be
established for noninteracting electrons by first presenting
a simple thought experiment, which is formalized by a
semiclassical Boltzmann transport theory. This will be
followed by a more general quantum nonlinear response
theory, which reproduces the Boltzmann theory. We will
then critically assess the prospects for experimentally
measuring χF in a 2D conductor using a triple point
contact. Crucial issues to be addressed include the role
of electrical contacts and electron-electron interactions,
which place bounds on the applicability of (2).
The Euler characteristic is defined as [16]

χF ¼
XD
l¼0

ð−1Þlbl; ð3Þ

where bl is the lth Betti number, given by the rank of the lth
homology group, which counts the topologically distinct l
cycles. In 1D, χF is the number of disconnected compo-
nents of the Fermi sea. In general, χF can be expressed as a
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sum over the disconnected components of the Fermi
surface. In 2D, electron-like, hole-like, and open Fermi
surfaces contributeþ1, −1, and 0, respectively. In 3D, each
Fermi surface with genus gk contributes 1 − gk. Note that
completely empty bands and completely filled bands both
have χF ¼ 0, and electron- and hole-like Fermi surfaces
have opposite sign for even D.
Morse theory [17,18] provides a representation of χF in

terms of the critical points of the electronic dispersion
EðkÞ, where vk ¼ ∇kEðkÞ=ℏ ¼ 0 for EðkÞ < EF,

χF ¼
X
m

ηm; ð4Þ

where m labels the critical points (assumed nondegenerate)
with signature ηm ¼ sgnfdet½∂2EðkmÞ=∂ki∂kj�g. This
shows that χF changes at a Lifshitz transition [7], when
a minimum, maximum, or saddle point passes through EF,
signaling a change in Fermi surface topology.
To motivate our result, we review and then generalize a

thought experiment [19] that explains the quantization of
the 1D Landauer conductance. Consider an infinitely long
1D electron gas (1DEG), with electronic states EðkÞ ¼
ℏ2k2=2m filled to EF. Apply an h=e voltage pulse VðtÞ by
introducing a slowly varying electric field Eðx; tÞ that is
nonzero near x ¼ 0 and t ¼ 0, such that

R
dxdtEðx; tÞ ¼

h=e. This will lead to a charge Q ¼ Gh=e transferred into
the right lead, where G is the conductance. The charge
Q ¼ e can be deduced from the fact that the impulse VðtÞ
transfers precisely one electron between the left- and right-
moving Fermi points, reflecting the chiral anomaly asso-
ciated with 1D chiral fermions. The chiral anomaly is a
consequence of the fact that the right and left movers are
connected at the critical point k ¼ 0. Because of the
impulse, one electron crosses k ¼ 0 and changes direction.
This argument can be generalized to a more complicated
dispersion EðkÞ. An electron will change direction at every
critical point inside the Fermi sea, leading to a net trans-
ferred charge Q ¼ eχF, with χF given in (4). It follows
that G ¼ χFe2=h.
We now seek a version of this argument for D ¼ 2.

Consider a 2D electron gas (2DEG) with dispersion EðkÞ
defined on an infinite plane that is divided into three
regions that meet at a point. Apply an h=e pulse V1ðtÞ to
region 1, followed by an h=e pulse V2ðtÞ to region 2 by
introducing electric fields near their boundaries. Each pulse
will lead to a charge transferred to lead 3 that scales with
the length of the contact. However, we will argue that the
excess charge Q3, defined as the charge transferred due to
the two pulses with the charge transferred for independent
pulses subtracted off, will be universal and given by
Q3 ¼ eχF, where χF is the Euler characteristic of the 2D
Fermi sea. This excess charge defines a second-order
nonlinear response that can be isolated in the frequency
domain.

It is simplest to consider the geometry in Fig. 1(a),
where region 1 is the half-plane x < 0, and regions 2 (3)
are the quadrants x > 0, y < 0 (y > 0). In that case, the
V1ðtÞ pulse accelerates electrons in the x direction, so that
for every value of ky on the Fermi surface there is one
extra electron propagating to the right (vx > 0) for x > 0
and one extra hole propagating to the left (vx < 0) for
x < 0. Q3 will be determined by the effect of the V2ðtÞ
pulse on those extra electrons with x > 0, which are
accelerated in the y direction. As in the 1D example
discussed above, the transferred charge can be determined
by counting those electrons that change directions at the
critical points on the Fermi surface where vx > 0 and
vy ¼ 0. Referring to the hypothetical Fermi surface in
Fig. 1(c), these arise at the points indicated by the dots,
which come in two varieties distinguished by whether the
Fermi surface is concave (convex) with ∂2E=∂k2y > 0

(< 0). Q3 is then e times the sum over those critical
points with signs sgn½∂2E=∂k2y�. By inspecting Fig. 1(c), it
is clear that this is χF. This will be proven below. We
conclude that Q3 ¼ eχF.
The above argument can be sharpened by developing a

semiclassical Boltzmann transport theory. In the absence of
scattering, the electron distribution function fðk; r; tÞ
satisfies the collisionless Boltzmann equation

ð∂=∂tþ vk · ∇r þ eE ·∇k=ℏÞf ¼ 0: ð5Þ

Consider two weak pulses,E1ðx1; y1; tÞ ¼ ξ1δðt− t1Þδðx1Þx̂
and E2ðx2;y2;tÞ¼ ξ2δðt− t2Þ½δðy2Þθðx2Þŷ−δðx2Þθð−y2Þx̂�.
We compute the charge

Q3ðt3Þ ¼ e
Z

d2k
ð2πÞ2

Z
∞

0

dx3dy3δfðk; x3; y3; t3Þ ð6Þ

V1(t)

Q3(t)

V2(t)

x

y

kx

ky

t

V1 V2

(a)

(b) (c)

FIG. 1. (a),(b) A thought experiment in which h=e voltage
pulses are applied to regions 1 and 2 in (a). (c) A hypothetical 2D
Fermi sea with χF ¼ −1. After pulse V1ðtÞ for x > 0, there are
extra electrons (shown in blue) propagating to the right. PulseV2ðtÞ
accelerates those electrons, and vy changes sign at the points
indicated by the red dots in a direction indicated by the arrows. The
net excess charge in region 3 is determined by the difference
between the number of concave and convex critical points on the
Fermi surface with vk ∝ þx̂, which measures χF.
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perturbatively at order ξ1ξ2 for t1 < t2 < t3. Integrating (5)
to this order gives δf ¼ e2ξ1ξ2δf̃=ℏ2 with

δf̃ ¼
Z

dy1dx2δðr32 − vkt32Þ
∂
∂ky

�
δðr21 − vkt21Þ

∂f0
∂kx

�
;

ð7Þ

where f0ðkÞ¼θ½EF−EðkÞ�, tij¼ ti− tj, r32¼ðx3−x2;y3Þ,
r21 ¼ ðx2;−y1Þ, and x2 (y1) are integrated from0 (−∞) to∞.
The second term in E2, with x2 ¼ 0, is absent because the δ
functions cannot be satisfied. After plugging (7) into (6), the
four spatial integrals cancel the δ functions, but since x2 > 0
(y3 > 0), we require vx > 0 (vy > 0) inside (outside) ∂=∂ky.
After integrating by parts on ky and replacing ξ1;2 → h=e, we
obtain

Q3 ¼ −e
Z

d2k
∂f0ðkÞ
∂kx θ½vxðkÞ�

∂θ½vyðkÞ�
∂ky : ð8Þ

This captures the result of the heuristic argument above:
−∂f0=∂kx isolates the Fermi surface, while θðvxÞ∂½θðvyÞ�=
∂ky isolates the critical points on the Fermi surface iden-
tified in Fig. 1(c). To make contact with Eq. (4), it is
convenient to add zero to the integrand in the form
−ð∂f0=∂kyÞθðvxÞ∂θðvyÞ=∂kx. This is clearly zero, since
∂f0=∂ky ¼ vy∂f0=∂E, and ∂θðvyÞ=∂kx fixes vy ¼ 0. This
allows us to integrate by parts to obtain

Q3 ¼ e
Z

d2kf0ðkÞ
�∂θðvxÞ

∂kx
∂θðvyÞ
∂ky −

∂θðvxÞ
∂ky

∂θðvyÞ
∂kx

�
: ð9Þ

The integrand is only nonzero near critical points where
vx ¼ vy ¼ 0. The integral evaluates the signature of each
critical point, leading to

Q3 ¼ e
X
m

ηm ¼ eχF: ð10Þ

We next consider the frequency domain response. This
can be computed using the Boltzmann theory; however, we
will first formulate a more general quantum nonlinear
response theory and show the Boltzmann theory follows,
provided the applied fields vary slowly in space and time.
To this end, we introduce the Hamiltonian

H ¼ H0 þ ðV1Q̂1eðη−iω1Þt þ V2Q̂2eðη−iω2Þt þ H:c:Þ; ð11Þ

with H0 ¼
P

k EðkÞc†kck and Q̂p ¼ R
drQpðrÞρðrÞ is

defined in terms of the density operator ρðrÞ for each of
the three regions in Fig. 1(a).QpðrÞ is 1 (0) inside (outside)
region p and is assumed to transition smoothly between 1
and 0 in a width b near the boundary, with kFb ≫ 1.
We compute the charge Q3ðtÞ at frequency ω1 þ ω2 to

order V1V2. We adopt a scalar potential formulation, which

avoids the diamagnetic term. The response has a structure
similar to second-order nonlinear optical response [20–22]
and is determined by evaluating the Feynman diagrams in
Figs. 2(a) and 2(b),

Q3ðω1 þ ω2Þ ¼ αðω1;ω2ÞV1V2; ð12Þ

with

αðω1;ω2Þ ¼
e3

ℏ2

X
l;m;n

fl − fm
ω1 − ωlm þ iη

�
Qlm

1 Qmn
2 Qnl

3

ω1 þ ω2 − ωln þ iη

−
Qlm

1 Qmn
3 Qnl

2

ω1 þ ω2 − ωnm þ iη

�
þ ð1 ↔ 2Þ: ð13Þ

Here l, m, and n label momenta, ωlm ¼ ½EðklÞ − EðkmÞ�=
ℏ, fl ¼ f0ðklÞ is a Fermi function, and

Qlm
p ¼ hkljQ̂pjkmi ¼

Z
drpQpðrpÞeiqlm·rp ð14Þ

with qlm ¼ kl − km. Since QpðrÞ varies on the scale of b,
an expansion in qlm and qnm is justified. As shown in
Supplemental Material Sec. A [23], the qlm and qnm
integrals can be performed to obtain

α ¼
Z

d2kd6r1;2;3
ð2πÞ2 ∇a

rQ1ðr1Þ∇b
rQ2ðr2ÞQ3ðr3Þ½∇a

kf0ðkÞ

Dðr21;k;ω1Þ∇b
kDðr32;k;ω1 þ ω2Þ� þ ð1 ↔ 2Þ; ð15Þ

with Dðr;k;ωÞ ¼ e−ðη−iωÞjrj=jvkjδðr × vkÞθðr · vkÞ. This
form of the response also follows from solving (5) in
the frequency domain withEpðr;tÞ¼−∇QpðrÞVpeðη−iωpÞt.
In Supplemental Material Sec. B [23], we evaluate (15)

for the infinite plane in which three rays separate regions
that subtend angles φp (see Fig. 3). We show that there is an
intrinsic term αiðω1;ω2Þ ¼ χFðe3=h2Þ=ðη − iω1Þðη − iω2Þ
that is independent φp (provided all φp < π [24]), as well
as the detailed spatial profile of the fields. In addition, there

Q1

Q2

Q3(a)

(b)

Q1

Q2

Q3

Q1

Q2

Q3

(c) (d)

(e)

FIG. 2. Feynman diagrams for the conductance. (a),(b) The 2D
nonlinear conductance and (c) the 1D linear conductance in the
absence of interactions and the quantized conductance deter-
mined by χF. (d),(e) Corrections to (a)–(c) that describe screening
due to electron interactions and modify the quantized result.
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is an extrinsic term with a distinct frequency dependence,
αeðω1;ω2Þ ¼ kðe3=h2Þ=½η − iðω1 þ ω2Þ�2 with a coeffi-
cient k that depends on φp as well as the details of the
Fermi surface. The extrinsic term was not picked up by
the pulse argument (where we assumed t2 > t1), since it
arises when E1 and E2 coincide in time. The intrinsic term
dominates when ω1 þ ω2 ≫ ω1 or ω2. The intrinsic term,
which is exact for the infinite plane and noninteracting
electrons is the central result of this Letter. To address
experimental feasibility we must consider the role of
contacts as well as electron-electron interactions. These
both introduce complications into the analysis.
As a model for electrical contacts, consider Fig. 3, which

depicts a 2DEG of size L with large area tunnel contacts to
ideal metallic leads separated by a distance b. Provided
the capacitance between the contacts and the 2DEG is
sufficiently large, the voltages in the leads will establish a
potential profile in the 2DEG as in Eq. (11). We assume
the tunnel barrier is in a regime in which the mean free
path l for tunneling from the 2DEG to the leads satisfies
k−1F ≪ l ≪ L. This defines a dwell time τ ¼ l=vF for
electrons in the 2DEG. In the pulse construction, we
clearly require t21 < τ, since for t21 > τ the first pulse
has disappeared before the second arrives. In the frequency
domain calculation, tunneling to the leads introduces an
exponential decay e−jrj=l into Dðr;k;ωÞ, which cuts off
the small ω1 divergence in α, effectively replacing ω1 →
ω1 þ i=τ. The coupling to the leads therefore places a
lower bound ω1;ω2 ≫ ωc for the applicability of (2)
with ωc∼τ−1. The intrinsic behavior is thus recovered
when ωc ≪ ω1ð2Þ ≪ ω2ð1Þ.
A second complication involves the role of electron-

electron interactions. In 1D, the analog of our calculation is
the Kubo formula conductance GKubo, which is given by
GKubo ¼ Ke2=h, where K < 1 is the Luttinger parameter
characterizing repulsive electron interactions [25,26].
However,GKubo does not correctly account for the electrical
contacts, and it was argued that for Fermi liquid leads on a

1DEG of length L, GðωÞ ¼ e2=h for ω ≪ vF=L [27–32].
An appealing interpretation of this was explained by
Kawabata [33], who argued that GKubo computed in an
infinite system is renormalized because it describes the
response to the applied voltage, while the quantized
conductance, which reflects the chiral anomaly, is the
response to the self-consistent potential, which includes
screening due to interactions. Moreover, for the dc con-
ductance, it is the self-consistent potential that determines
the measured electrochemical potential difference. Shimizu
[34] emphasized the similarity of this description to Fermi
liquid theory [35]. In terms of Feynman diagrams, for the
response to the applied field, the Kubo formula bubble
diagram [Fig. 2(c)] is dressed by convolving with RPA-like
polarization bubbles [Fig. 2(d)], Πðx;ωÞ, represented here
in real space. For a 1DEG in which leads are modeled by
setting the interactions to zero for jxj > L, it can be checked
that, since Πðx;ωÞ ∼ ðω=vFÞeiωx=vF and jxj < L, the inter-
action corrections vanish for ω ≪ vF=L.
To incorporate electron interactions into the calculation

of the 2D nonlinear response, we adopt a renormalized
Fermi liquid description [36] in which quasiparticles near
EF interact with an energy fkk0nknk0, where nk ¼ c†kck.
At low energy, the important interaction corrections involve
RPA bubbles [37], and summing the diagrams like in
Fig. 2(e) is equivalent to incorporating the Fermi liquid
interactions fkk0 into the Boltzmann equation [35,36].
This is difficult to solve, in general, but by evaluating
the simplest diagram at first order in fkk0 it can be
checked that the response to the applied field is modified:
χF → χF þO½NðEFÞf�, where f is an average of fkk0 over
the Fermi surface. Thus, the nonlinear response in 2D is
modified by the Fermi liquid parameters just as the linear
response in 1D is modified by the Luttinger parameter. The
bubble Πðω; rÞ ∝ ðω=vFÞeiωjrj=vF vanishes for ω ≪ ωc as
for D ¼ 1. However, since we must consider ω1;ω2 ≫ ωc,
the interaction corrections remain. The origin of the
correction is the same as in D ¼ 1: due to interactions,
the potential is screened, as is accounted for by the RPA
bubbles.
At finite frequency, more detailed modeling is required

to determine the relation between the self-consistent
potential and the measured voltage. In the absence of that,
it will be fruitful to consider weakly interacting systems.
Consider a 2D Dirac material, such as graphene, with
density of states NðEÞ ∼ jEj=v2F. For a short-ranged inter-
action (screened by the leads) NðEFÞf ≪ 1 for sufficiently
small EF. Interestingly, the Fermi surface is electron-like
(hole-like) for EF > 0 (EF < 0), so the response charac-
terized by χF ¼ 4sgnEF (including spin and valley)
changes sign at charge neutrality.
Our analysis opens several avenues for further inquiry.

On the practical side, it will be interesting to search for
other measurable quantities that probe χF. Promising
candidates include low frequency current noise as well

2DEG

Metal

ϕ1

ϕ2

ϕ3
lb

FIG. 3. A triple point contact as a model experimental geom-
etry. A 2D electron gas is connected to three metallic leads of size
larger than the tunneling mean free path l. The leads are
separated by b and subtend angles φ1;2;3.
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as thermal conductance. It will also be interesting to
generalize our theory to D > 2 and to explore ways in
which χF provides a fundamental characterization of a
degenerate Fermi gas. Our analysis suggests that χF
defines a kind of “higher order" anomaly. In 1D, the chiral
anomaly characterizes the connection between left- and
right-moving electrons, which leads to a lack of conserva-
tion of the right movers. ForD > 1, χF characterizes a more
general violation of conservation due to the fact that
electrons propagating in different directions are connected
at critical points km. This is related to the Fermi surface
anomaly discussed in Ref. [38], which characterizes a
particular point on the Fermi surface. However, unlike that
description, χF provides a global characterization of the
Fermi surface. For D ¼ 1 the bipartite entanglement
entropy has a universal term S ¼ ðc=3Þ logL [39,40] with
c ¼ χF. This has been generalized to higher D, where S
describes a logarithmic area law entanglement that involves
the projected area of the Fermi surface [41,42], which is
nonzero even for a system of decoupled 1D wires [43], with
χF ¼ 0. We speculate that, for D > 1, χF shows up in an
intrinsically D-dimensional entanglement measure.

We thank Patrick Lee and Pok Man Tam for helpful
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